Monday, September 30, 2013
SV#1: Unit F Concept 10 - Finding all real and imaginary zeroes of a polynomial
• So today you guys will be learning how to find my student video problem today, which is 10x^4 + 27x^3 - 55x^2 + 13x + 5.
• One thing you guys should really be paying attention to are the sign changes for those who do not understand what those sign changes do. But more importantly just try to focus how I set it up and why I did that.
Tuesday, September 17, 2013
SP#2: Unit E Concept 7 - Graphing a polynomial and identifying all key parts
In this picture we'll be finding on how to find the end behaviors (describes how a graph acts at the extremes - as we go really far to the left (get closer to negative infinity) or as we go really far to the right (get closer to positive infinity). Remember, because this is what happens in the extremes, this tells us nothing about what is happening in the middle - how many ups and downs there are, how many zeroes there are, etc. We just don't care about it. Polynomial end behavior is quite predictable. It is based on two things: 1)Degree & 2)Leading Coefficient.
(SECOND PARAGRAPH)
But the main goal here in this picture is to know whether this graph will have to go: thru, bounce, or curve at some point. As you can see my equation is y=x^4-13x^2+36. What we first want to do is factor it out to get (x-3)(x+3)(x+2)(x-2). Next, finding the end behavior. The end behavior is as x-> inf., f(x) -> inf. As x -> -inf., f(x) -> inf. In the same manner, 3M1,-3M1,-2M1,2M1. Finally, the y-intercept should be (0,36) because as you plug in 0 in the x's you get 36.
Thursday, September 12, 2013
WPP#4: Unit E Concept 3 - Maximizing Area
Create your own Playlist on MentorMob!
Wednesday, September 11, 2013
WPP#3: Unit E Concept 2 - Path of Football (or other object)
Create your own Playlist on MentorMob!
SP#1: Unit E Concept 1 - Graphing a quadratic and identifying all key parts
Our equations will start in standard form f(x) = ax^2 + bx +c. In order to graph them more easily, we MUST complete the square to put it in the parent function form, like this: f(x) = a(x-h)^2 + k. Our graph will include between 2 and 4 points the vertex, y-intercept, and up to two x-intercepts, as well as one dotted line (the axis). (SECOND PARAGRAPH)
So in order to solve this parent graph function you must follow step by step. You start off with the original function and work your way down to the bottom. Next you have to equal the function to zero and from there you have to complete the square. And after that you'll have two things. The graph problem solving and the solving itself to find x-intercepts.
Tuesday, September 3, 2013
WPP#2: Unit A Concept 7 - Profit, Revenue, Cost
Create your own Playlist on MentorMob!
WPP#1: Unit A Concept 6 - Linear Models
Create your own Playlist on MentorMob!
Subscribe to:
Posts (Atom)